
Bite-sized CS
& other CS Ed research

Kathryn Cunningham
University of Michigan

June 6, 2018

2008 - 2013

Arizona
CS & Bio B.S.

2013 - 2016

CSin3
CS Education
Coordinator

2016 - 2018

Georgia Tech
MS CS HCC

TERC
Intern

2018 - ?

Michigan
PhD Info

CSin3
LetÕs address all challenges
facing our low-income CS
undergraduates simultaneously.

¥  Three-year transfer pathway

to a BS in CS, <$15k cost
¥  Constant social support from

cohort, staff
¥  Career advice and

preparation
¥  Academic support, especially

for CS content
me

My daily experience with
CSin3

A Best Paper at SIGCSE 2018

Graduation rate: 73% (3 years)
Traditional graduation rate:
22% (4 years), 46% (6 years)

Jobs within 2 mo. of graduation: 78%

 Incl. Lyft, Apple, Salesforce

90% under-represented minority

80% first-generation college
32% female

Design principles:
¥  Give support just-in-time, just-in-

place
¥  Ensure that students see a vision of

their future and a path to get there
¥  Select on dedication, not GPA
¥  Anyone can learn computer science CSin3

Why is
learning to
program

hard?

How do college
students

understand
programming?

Understanding
mental models

through
sketching

Organizing
programming

knowledge into
programming

plans

This experience inspired me!

Some
background

temp = brother_name
brother_name = sister_name
sister_name = temp

Swap the names of
the brother and sister

Function

Structure

Behavior

ÒJamesÓ

sister_name
ÒMaryÓ

brother_name

Understanding programming -> forming a
mental model of the notional machine

!"#$%"&'()#$*)#+,-.*#/%01#2345"&617#%8#
&1'9:3:;#<%#=9%;9'0*#>%"9:'&#%8#
?2"5'6%:'&#@%0="6:;#A171'95B)#CD+E)#
==*FGHGI*#

The Notional
Machine

Mental Model

Trace code to strengthen mental model of the
notional machine

J"%)#K*>*)#CL+I*#M:&3:1#=(<B%:#
<"<%9N#10O122'O&1#P1OHO'712#
=9%;9'0#Q37"'&3R'6%:#8%9#@/#
12"5'6%:*#S:#K9%51123:;#%8#<B1#
TT<B#U@V#<15B:35'(0=%73"0#
%:#@%0="<19#7531:51#12"5'6%:#
D==*#FG,HF-TE*##
#

3 4x y 7

/%9Q')#>*)#CL+I*#W%6%:'&#
0'5B3:17#':2#3:<9%2"5<%9(#
=9%;9'003:;#12"5'6%:*#
U@V#X9':7'56%:7#%:#
@%0="6:;#?2"5'6%:#
DXM@?E)#+IDCE)#=*-*#

Structure Behavior Function model - definition

parts	of	the	system	
and	their	connec1ons	

NY#

NY##

:= outcomes,	
precondi1ons	/	
postcondi1ons	

sequence	of	states	
and	transi1ons	
between	them	

!"#$%&##

'()"$(")* ##

+*,-./&) #

J%1&)#U*Z*)#+,,G*#!173;:)#':'&%;()#':2#591'6Q3<(*#S???#1[=19<)#+CDIE)#==*.CHGL*#
J%1&)#U*Z*)#A";'O19)#/*#':2#\']'0)#/*)#CLL,*#/<9"5<"91)#O1B'Q3%9)#':2#8":56%:#%8#5%0=&1[#7(7<107N#
XB1#7<9"5<"91)#O1B'Q3%9)#':2#8":56%:#0%21&3:;#&':;"';1*#U3#?2'0)#CID+E)#==*CIHIF*#
#
#

U#01<B%2#8%9#
":2197<':23:;#5%0=&1[#
7(7<107#

SBF modeling of programming

J%'&)#
7=153^5'6%:# !"#$%&##

'()"$(")* ##

+*,-./&) # ?[15"6%:#%8#
<B1#:%6%:'&#

0'5B3:1#

@%21)#7(:<'[#
1&101:<7#

song	=	getSong(“happybirthday.midi”)	

for	note	in	song:	

		duration	=	getDuration(note)	

		setDuration(note,	duration	*	0.5)	

play(song)	

	

	

Decrease the
length of each note

in a song by half

0.2 s 0.1 s

Bite-sized CS
Can you do some

programming in 20 mins or
less?

Contexts
and plans

What patterns exist in programming?
But	these	may	not	be	the	best…	

/'Q3<5B)#_*>*#CL+T*#
K9%O&10#7%&Q3:;#P3<B#@`
`*#,<B#?2*#K1'97%:#
U2237%:#_17&1(*#

¥  Very general

¥  Each achieves a wide
variety of goals

¥  In practice, programmers
are combining syntax
patterns

One	example	of	a	
for	loop	

	
Print	numbers	
Make	Fibonacci	
Count	items	
Average	items	
Modify	items	
Find	the	max	
	

What patterns exist in programming?
Typically:	Syntax-based	paIerns	 But	these	may	not	be	the	best…	

/'Q3<5B)#_*>*#CL+T*#
K9%O&10#7%&Q3:;#P3<B#@`
`*#,<B#?2*#K1'97%:#
U2237%:#_17&1(*#

¥  \19(#;1:19'&#

¥  ?'5B#'5B31Q17#'#P321#
Q'931<(#%8#;%'&7#

¥  S:#=9'5651)#=9%;9'00197#
'91#5%0O3:3:;#7(:<'[#
=']19:7#

¥  XMM#$SJa#

Instead: Goals and Plans

Goal Plan

song	=	getSong(“happybirthday.midi”)	

for	note	in	song:	

		duration	=	getDuration(note)	

		setDuration(note,	duration	*	0.5)	

play(song)	

	

	

Decrease	the	
length	of	each	

note	in	a	song	by	
half#

Increase	or	decrease	all	plan	
/%&%P'()#?&&3%<*#bc1'9:3:;#<%#
=9%;9'0Y#&1'9:3:;#<%#5%:7<9"5<#
015B':3707#':2#1[=&':'6%:7*b#
@%00":35'6%:7#%8#<B1#U@V#
C,*,#D+,-.EN#-FLH-F-*#

01-#2
01-#2

01-#2
01-#2

01-#2
01-#2

01-#2

01-#2
01-#2

01-#2

Defining plans

Sample code2 Label2
song = getSong(Òhappybirthday.midiÓ) Collect input#
for notes in song: Go through all items#
 d = getDuration(n) Get the value#
 setDuration(n, d * 0.75) Multiply the value by a factor#
play(song) Use the changed input#

Plan NameN#S:591'71#%9#21591'71

Plan Goal:#S:591'71#%9#21591'71#'&&#Q'&"17#O(#'#519<'3:#8'5<%9*##

Labels

Defining plans across contexts

Sample code2 Label2
song = getSong(Òhappybirthday.midiÓ) Collect input#
for notes in song: Go through all items#
 d = getDuration(n) Get the value#
 setDuration(n, d * 0.75) Multiply the value by a factor#
play(song) Use the changed input#

Plan NameN#S:591'71#%9#21591'71

Plan Goal:#S:591'71#%9#21591'71#'&&#Q'&"17#O(#'#519<'3:#8'5<%9*#
Labels

Inventory2
Worked Example2

inventory = getInventory (ÒKitchenÓ)

for product in inventory:
 price = getPrice (product)
 setPrice (product, price * 0.5)

updateInventory (inventory)

Decrease the price of all items, using a factor of 0.52

Songs2
Worked Example2

song = getSong (Òhappybirthday.midi Ó)

for notes in song:

 d = getDuration (n)

 setDuration (n, d * 0.75)

play(song)

3*$)*-4*2(,*25")-%&62-112#&(*472"4/#82-26-$(&)2&629:;<2

Pictures2
Worked Example2

picture = getPicture (Òbeach.jpg Ó)

for pixel in picture:

 red = getRed (pixel)

 setRed (pixel, red * 2.0)

view(picture)

Increase the red values of all pixels, using a factor of 2.02

SBF modeling of programming

J%'&)#
7=153^5'6%:# !"#$%&##

'()"$(")* ##

+*,-./&) # ?[15"6%:#%8#
<B1#:%6%:'&#

0'5B3:1#

@%21)#7(:<'[#
1&101:<7#

song	=	getSong(“happybirthday.midi”)	

for	note	in	song:	

		duration	=	getDuration(note)	

		setDuration(note,	duration	*	0.5)	

play(song)	

	

	

Decrease the
length of each note

in a song by half

0.2 s 0.1 s

Benefits of plans across contexts

Viewing plans implemented across multiple contexts
may provide an opportunity for students to abstract
the underlying plan structure.

Can learning plans across contexts lead to
improved transfer of that plan to a new context?

Pre-test

used for
screening

Same context: Each plan is taught in a single context

Different contexts: Each plan is taught in 3 different contexts

Learn

Plan 1 in
1st context,

Plan 1 in
2nd context,
Plan 1 in 3rd

context Assess

 Plan 1
in 4th

context

Learn

Plan 2 in
1st context,

Plan 2 in
2nd context,

Plan 2 in
3rd context Assess

 Plan 2
in 4th

context

Learn

Plan 3 in
1st context,

Plan 3 in
2nd context,

Plan 3 in
3rd context

Assess

 Plan 3 in
4th

context
Learn

Plan 1 in

1st context,
Plan 1 in

1st context,
Plan 1 in

1st context

Learn

Plan 2 in
2nd context,

Plan 2 in
2nd context,

Plan 2 in
2nd context

Learn

Plan 3 in
3rd context,

Plan 3 in
3rd context,

Plan 3 in
3rd context

Participants: college
students with no prior

programming
experience

Requires highly scaffolded
assessments

Z%123:;19)#Z1::1<B#A*)#U&O19<#X*#@%9O1])#':2#@B'9&17#K1981d*#
bXB1#e:%P&12;1H&1'9:3:;H3:7<9"56%:#DZcSE#89'01P%9eN#X%P'92#
O932;3:;#<B1#7531:51H=9'5651#5B'70#<%#1:B':51#9%O"7<#
7<"21:<#&1'9:3:;*b#@%;:36Q1#/531:51#DCL+LE*#

Thanks!

Additional slides

Future directions

What is knowledge of programming?

!   One answer is an ontology of plans

!   Towards measurement of smaller skills in
programming knowledge

To what extent do novices infer notional machine function
from plan-based instruction?

What does it take to get this in classrooms?

Extended abstracts, FDG & CHI PLAY 2017

How can Computational Thinking (CT)
be identified in Zoombinis gameplay?

Zoombinis is a computer game about
discrete mathematics-inspired puzzle-
solving.

Learners: 3rd-8th graders
Contrast gameplay of computing experts

Using an operational definition of
computational thinking (CT), created
coding system for 5 Zoombinis puzzles.

Zoombinis

Toolbox for improving CS1 instruction

What do we know about
how people learn?

"   How do we build
knowledge
structures?

"   Methods:
!   Lab studies
!   Think- alouds

CS Domain-Based
Education Research

What works in learning
programming?

"   How do cognitive
science concepts Þt
into understanding of
CS1?

"   Methods:

!   Lab studies

Learning sciences

How can we change
practice?

"   How can we
incorporate proven
approaches into CS1
classrooms?

"   Methods:

!   DBR

Cognitive science

Sketching
ICER 2017, 3rd place audience choice award

Using Tracing and Sketching to Solve
Programming Problems:
Replicating and Extending an Analysis
of What Students Draw

Kathryn Cunningham, Sarah Blanchard,
Barbara Ericson, Mark Guzdial

Sketching
results from
the Leeds
Working
Group

(A multi-national study
of reading and tracing
skills in novice
programmers. ITiCSE
2004)

Tracing sketches ! better performance
No sketching at all ! lower performance
Non-tracing sketches ! middling performance

T (Trace) Ð Multiple
values of a single
variable

S (Synchronized Trace)
Ð Tracing all values
every time any one
changes

O (Odd Trace) - A trace
that canÕt be categorized
as T or S

C (Calculation)

P (Position)

S

N (Number)

8 problems
(for loops, lists,

selection in
Python)

Problem Task

1 Read code - Predict values

2 Read code - Describe code functionality

3 Read code - Predict values

4 Read code - Predict values

5 Read code - Predict values

6 Fix code

7 2D Parsons (Order code)

8 Write code

15 minutes

10 minutes

10 minutes

10 minutes

135
students

(CS1)

Results replicated
on code reading
problems!

¥  Different distribution of sketches,
possibly based on problem type &
ebook format

¥  Possible evidence of split attention
effect

¥  ÒOdd tracingÓ not as good Ð more later

Tracing sketches ! better performance

No sketching at all ! lower performance

Non-tracing sketches ! middling performance

✔

✔

✔

Different story on other problem types

¥  Few students sketched (22%
on write code, 3% on order
code, 13% on fix code)

¥  Very few traced
¥  Different sketch types:
o  W (Write)
o  D (Describe)

W (Write)

D (Describe) D (Describe)

Extending the taxonomy for sketched traces

n = 26

n = 77

n = 9

Chunk
Line

Crossout

n = 2

Arrow flow

a = 10!
b = 3!
t = 0!
for i in range (1, 4):
 t = a
 a = i + b
 b = t - i

What do a and b
equal after the
following code
executes?

Type of
sketched trace
doesnÕt
correspond
with
correctness

Although some may seem
more accurate representations
of the notional machine

Chunk

Line

Crossout

Arrow flow

92.3% (n = 26)

82.4% (n = 77)

77.8% (n = 9)

50.0% (n = 2)

Creating a
complete
trace
corresponds
with
correctness

Incomplete
9.1% (n = 11)

None
37.5% (n = 8)

Chunk

Line

Crossout

Arrow flow

92.3% (n = 26)

82.4% (n = 77)

77.8% (n = 9)

50.0% (n = 2)

Current program visualization tools don’t
visualize code execution like students do

With rare exceptions:

¥  Heavy use of boxes, no tables
¥  No persistence of values or organization

by iteration

Online Python Tutor ¥  Code and variable values are separated

Sajaniemi, J. and
Kuittinen, M. 2003.
Program animation based
on the roles of variables.
In Proceedings of the ACM
Symposium on Software
Visualization (SoftVis’03).
7–16.

How can program
visualization design be
informed by student
sketching?

Paper in the pipeline!

Corresponding instructional techniques

Program visualization
with predictions and
other engagement

Function

Structure

Behavior

Worked code examples
with subgoals and practice,
also across contexts

Clear goals
as well as emphasizing
goalsÕ relationships to
structure and behavior

