Bite-sized CS
& other CS Ed research

Arizona Georgia Tech L, Michigan M
CS & Bio B.S. MS CS HCC PhD INfO |
MICHIGAN

CSIn3 - VO ,f;_,: AT TERC
CS Education [% Intern

Coordinator

C S I n 3 Evalution

LetOs address all challenges e Seamless
facing our low-income CS THnistrative Suppqyy
undergraduates simultaneously.

¥ Three-year transfer pathway
to aBS in CS, <$15k cost

¥ Constant social support from
cohort, staff

¥ Career advice and
preparation \

¥ Academic support, especialy— - S

for CS content ©

My daily experience with
CSin3

Graduation rate: 73% (3 years)
Traditional graduation rate:
22% (4 years), 46% (6 years)

Jobs within 2 mo. of graduation: 78%
Incl. Lyft, Apple, Salesforce

90% under-represented minority
80% first-generation college
32% female

Design principles:
f Give support just-in-time, just-in-
place
Ensure that students see a vision of
their future and a path to get there
f Select on dedication, not GPA
¥ _Anyone can learn computer science

A Best Paper at SIGCSE 2018

This experience inspired me!

How do college
students
understand
programming?

Why is
learning to
program
hard?

Understanding
mental models
through
sketching

Organizing
programming
knowledge into
programming
plans

temp = brother name
brother name = sister name
sister name = temp

S O m e Structure
background

Function

Swap the names of
the brother and siste

Understanding programming -> forming a
mental model of the notional machine

Mental Model The Notional
Machine

I"HSY6" 8 (HS* i+, %0 1#2345"&61TH
&L'9:3: H<YH=9%;9'0%#>%": &#%81
22"5'6%: &#@%60="6:;#A171'95B)#CD
==*FGHGI*#

Trace code to strengthen mental model of the
notional machine

J"%)HK*>*)HCL+I*#M:&3:1#=(<B%:#
<"<%IN#100122'0&1#P1OHQO'712#
=9%;9'0#Q37"&3R'6%:#8%9#@/#
12"5'6%:*#S:#K9%51123:;#%8#<B1#
TT<B#U@V#<15B:35'(0=%73"0#
%:#@%0="<19#7531:51#12"5'6%:#
D==*#FG,HFA E*#

#

1%9QH>*HCL+I*#W%6%: &#
0'5B3: 174" 2#3:<9%2"5<%9(#
=9%:;9'003:;#12"5'6%:*#
U@V#X9':7'56%: T#%:#
@Y%0="6:;#72"5'6%:#
DXM@?E)#+IDCE)#=*-*#

Structure Behavior Function model - definition

U#01<B%2#8%9#
":2197<"23:;#5%0=&1[#
7(7<107#

NYé&utcomes,
preconditions /
postconditions

NYs#Htts of the system
'0"$(")* W and their connections

I"H#3%0&HH : A\ = sequence of states
and transitions
between them

JOLRUFZH)i+, G173,)# /8% ()#':2#591'6Q3<(*#S??2#1[=19<)#+CDIE)#==* CHGL*#
JNLRUZAHOL0H# 280 JH*HCLL,*#/<9"5<"91)#01B'Q3%0)#': 248" 56% #%8#5%0=
XB1#7<9"5<"91)#01B'Q3%0)#": 248":56%:#0%218&3:;#&" ;" 1*#U3#22'0)#CID+E)#==*CIHIF

SBF modeling of programming

I%'&)#

song = getSong(“happybirthday.midi”)

@%21)#7(:<'[# for note in song:
1&101:<7# duration = getDuration(note)

setDuration(note, duration * 0.5)

0"$(")* N play(song)

"4 & ?[15"6%:#%8#

7=153"5'6%:% ‘ <B1#:%6%:'&#

Decrease the
length of each note
in a song by half

0'5B3:1#

Bite-sized CS

[song = uplosdseng()

‘ if length(song) == 0:
[error ("The song shouldn’t have 0 notes!")
[else:

save (song)

w l profile picture = pickPicture()

[if length(profile picture) == 0:

" error ("This picture has no pixels!")
[else:

L setProfile (profile_picture)

—3

Contexts
and plans

One example of a
for loop

Print numbers
Make Fibonacci
Count items
Average items
Modify items
Find the max

What patterns exist in programming?

Typically: Syntax-based patterns

DISPLAY 2.13 Syntax of the while Statement

A Loop Body with Several Statements:

while (Boolean_Expression)

{

1

2

3 Statement_1
4 Statement_2
5

6

7

Statement_Last
}

A Loop Body with a Single Statement

8 while (Boolean_Expression)
9 Statement =

'Q3<5Rt_*>*#CL+T*#
K9%0&10#7%&Q3:;#P3<B
“k <BEDORHK1'97 Yo H
U2237%:# 1784 (*

DISPLAY 2.9 Syntax for an if-else Statement

A Single Statement for Each Alternative:

if (Boolean_Expression)
Yes_Statement

else
No_Statement

A Sequence of Statements for Each Alternative:

it (Boolean_Expression)
{
Yes_Statement_1
Yes_Statement_2

Yes_Statement_Last
}

else
.

No_Statement_1
No_Statement_2

No_Statement_Last

But these may not be the best...
\19(#;1:19'&#

?'5B#5B31Q17##P321#
Q'931<(HY%8H#: %' &TH#

S:#=9'5651)#=9%;9'00197#
'91#5%003:3:;#7(:<'[#
="119:7#

XMM#$SJa#

Instead: Goals and Plans

Plan

song = getSong(“happybirthday.midi”)
Decrease the
length of each

note in a song by
half# setDuration(note, duration * 0.5)

for note in song:

duration = getDuration(note)

play(song)

1%&%P'(J#?8&&3%<*#bc1'9:3:;#
Increase or decrease all plan =0%;9'0Y#&1'9:3: #<%#5%:7<S
015B":3707#":2#1[=&"'6%:7*b#

@%00":35'6%: 7#%8#<B1#U@
C* #D+,- EN#-FLH#-*

Defining plans

Plan NameN#S:591'71#%9#21591'71
Plan Goal:#S:591'71#%9#21591'7 1#'&&#Q'&"17#O(#'#519<'3:#8'5<% 9*##

Labels

Sample code? Label2

song = getSong(Ohappybirthday.midiO) Collect input#

for notes in song: Go through all items#H

d = getDuration(n) Get the valueff

setDuration(n, d * 0.75) Multiply the value by a factortt

play(song) Use the changed input#

Defining plans across contexts

Inventory?2
SongsZ

Pictures?
Worked Example2

foprripcf‘iua ini for notes in song: picture = getPicture (Obeach.jpg O)

inventory = song = getSong (Ohapp

setPrice. (| d= getDuration (n) | for pixel in picture:

updatelnvento| setDuration (n,d*0.7 red= getRed (pixel)

play(song) setRed (pixel, red * 2.0)
Decrease t

view(picture)

3*$)*-4*2(,*25")-94

play(song)

Increase the red values of all pixels, using a factor of 2.02

SBF modeling of programming

I%'&)#

song = getSong(“happybirthday.midi”)

@%21)#7(:<'[# for note in song:
1&101:<7# duration = getDuration(note)

setDuration(note, duration * 0.5)

0"$(")* N play(song)

"4 & ?[15"6%:#%8#

7=153"5'6%:% ‘ <B1#:%6%:'&#

Decrease the
length of each note
in a song by half

0'5B3:1#

Benefits of plans across contexts

Viewing plans implemented across multiple contexts

may provide an opportunity for students to abstract
the underlying plan structure.

Can learning plans across contexts lead to
Improved transfer of that plan to a new context?

Different contexts: Each plan is taught in 3 different contexts

Learn Learn Learn

=== Plan1in Plan 2 in == Plan 3 in
1st context, 1st context, 1st context,
Plan 1 in Plan 2 in Plan 3 in
2" context, 2" context, 2" context,

Plan 1 in 3 Plan 2 in Plan 3 in

Assess Assess Assess

Pre-test context 3rd context 3rd context

Lsed for Elan 1 Plan 2 Plan 3 in
screening Learn in 47 Learn in 47 Learn A"
context context context
Plan1in Plan 2 in Plan 3 in
1st context, 2"d context, 3rd context,
Plan 1 in Plan 2 in Plan 3 in
1st context, 2" context, 3rd context,
Plan1in Plan 2 in Plan 3 in
1st context 2"d context 3rd context

Same context: Each plan is taught in a single context

Assessment | (easiest):

Can learners identify and label plan
components in a concrete instance?

Participants: college g
students with no prior —

if height < 18:

programming e

print(foundVeryShort)

experience o

go through all values - pgsessment 2 (harder):
Jjump to first instanc

get list show result
_ Can learners fill in missing parts of a
plan instance?

Requires highly scaffolded

assessme ntS dogHeights = measureDogs()
foundVeryShort =

height in
height < 1@:
foundVeryShort =

print(l I
dogHeights L
[for gre’g foundVeryShort

‘ height

true

Table 3
Some basic knowledge component categories

Application Conditions Response Relationship Rationale Labels

Constant Constant Non-verbal No Association

Constant Constant Verbal No Fact

Variable Constant Non-verbal No Category

Variable Constant Verbal No Concept

Variable Variable Non-verbal No Production, Schema, Skill
Variable Variable Verbal No Rule, Plan

Variable Variable Verbal Yes Principle, Rule, Model

Z%123:;19)#Z1:: 1<B#A*)#ULO19<#X*#@%90 1)1 IBA@B
bXB1#e:%P&12;1H&1'9:3:;H3:7<9"56%:#DZcSE#89'01PY
0932;3::#<B1#7531:51H=9'5651#5B'70#<%#1:B":51#9%Q
7<"21:<#&1'9:3::*b#@%;:36Q1#/531:51#DCL+LE*

Thanks!

Additional slides

Future directions

What is knowledge of programming?
1 One answer is an ontology of plans

v Towards measurement of smaller skills In
programming knowledge

To what extent do novices infer notional machine function
from plan-based instruction?

What does it take to get this in classrooms?

How can Computational Thinking (CT)
| Computational Thinking Learning Progression | be Identlfled In Zoomblnls gameplay’)

Trlal and Systematlc Worklng General ZOOmbInIS |S a. Computer game abOUt
’ m “ - m discrete mathematics-inspired puzzle-
solving.

Mudball Wall
Coal: Ohoose mudballs that hit the bricks with dots. There's a pattern you must discover

Learners: 3-8 graders
Contrast gameplay of computing experts

Using an operational definition of
computational thinking (CT), created
coding system for 5 Zoombinis puzzles.

Zoombinis

Extended abstracts, FDG & CHI PLAY 2017

Toolbox for improving CS1 instruction

. : CS Domain-Based . .
nitiv ien .
Cognitive science Education Research Learning sciences

What do we know about What works in learning How can we change
how people learn? programming? practice?

How do we build "1 How do cognitive "1 How can we
knowledge science concepts bt Incorporate proven
structures? into understanding of approaches into CS1

@ ?
Methods: CS1~ classrooms~

'l Lab studies "I Methods: "I Methods:
‘1" Think-alouds Il Lab studies || DBR

5.2 The Alternative Action Pattern

Programs must often select from a variety of actions. For example, say one student passes with a final
grade that is = 60.0. The next student fails with a final grade that is < 60.0. This example uses the
Alternative Action algorithmic pattern. The program must choose one course of action or an alternative.

Algorithmic Pattern: Alternate Action

Pattern: Alternative Action

Problem: Need to choose one action from two alternatives.

Outline: if (true-or-false-condition is true) execute action-1
otherwise execute action-2

The if else Statement

The Alternative Action pattern can be implemented with Java’s if else statement. This control structure
can be used to choose between two different courses of action (and, as shown later, to choose between
more than two alternatives).

The if else Statement

if (boolean-expression)
true-part

else
false-part

Using Tracing and Sketching to Solve
Programming Problems:

KT } (i Hhomore? Replicating and Extending an Analysis
a9 | '] of What Students Draw

/00 " Beth "

#5| [
o5 | [y’ e /@ g Kathryn Cunningham, Sarah Blanchard,

Barbara Ericson, Mark Guzdial

a6 - beill "], /
12 ,;} | L ‘UO’ (

¢ Lo/
. in rang (€4,
- | = num In ¥ (1“.,(1,)):'

| p [’f\%ﬁ‘ﬂf‘“‘Mj >IWV‘:

o gqroditna

= huMm

mo¥ L?’;:ﬁ ¥

O \‘ ?ﬁl ‘k 5

place
/
(m cvx)

“Q('m‘
(nomes iﬁmd}

?[mf

Sketching —

ICER 2017, & place audience choice award

: Tracing sketches | performance
Sketchlng No sketching at all ! performance

results from Non-tracing sketches ! middling performance
the Leeds T

int x(} = (2, 1, 4, 5, 7); :
T ot \ T (Trace) B Multiple

int limit = 3; Lk X
Or I n g int i =07 2 values of a single
int sum = 0; ’

g2 & e variable
while ((sum<limit) && (i< length))

G ro u p g ; . S (Synchronized Trace)

b Tracing all values
every time any one
changes

a) 0
b) 1
=0

(A multi-national study [CEEEEEC. - e
of reading and tracing (Number) . asTorS

skills in novice

programmers. ITICSE
2004)

135

students
(CS1)

8 problems
(for loops, lists,
selection In
Python)

Problem Task

Read code - Predict values
Read code - Describe code functionality
Read code - Predict values
Read code - Predict values
Read code - Predict values
Fix code
2D Parsons (Order code)

Write code

15 minutes

10 minutes
10 minutes

10 minutes

Tracing sketches !
No sketching at all !

performance
performance

Non-tracing sketches ! middling performance

Results replicated

on code reading
problems!

Different distribution of sketches,
possibly based on problem type &
ebook format

for \ {n (cwal,(l, q>

Possible evidence of split attention
effect

OOdd tracingO not as good B more later

Different story on other problem types

Code
s el Taul Segnoonk (AWSY, (i, end): 58

itteve ey = eluscC(© A0 7o

120

¥ Few students sketched (22% det
on write code, 3% on order v el ("
code, 13% on fix code) for fw n UURE

¥ Very few traced | oy =0 -
¥ Different sketch types: R (Write)

M = PAKRY = min wv

ol W (Write) ot
16 Aty =1L

ol D (Describe) rum W
nw: A Qv t€ 2 10
eolo bttal vaanfedl py @ no ﬂ
S0 Cownt 1 of v\w? fad tin

fnd tont

/-61,\,% reburn [
e 1o i D (Describe)

Extending the taxonomy for sketched traces

(23

for 3 oye (Lu):

Arrow flow £, 054 —9\\1]1
g -Tvbisy>1 20

N R

a=10!

b =3I

tZO!- 3 What doaand b
for 1 inrange equal after the
ta ° i +b following code
b=t- i executes?

Type of S -
sketched trace | - -
doesnOt T | -
correspond B

d\

correctness 77.8% (n = 9)

a3

o) om ooye (LU)
Although some may seem e | Arrow flow
. t=a, % lb>4 1

more accurate representations i 2
of the notional machine aztrei=y ky 50.0% (n = 2)
b +-1>9 5 R

Creating a

82.4% (n = 77)

complete o
trace

corresponds 92.3% (n = 26) 0.1% (n= 11

With
correctness 77.8% (n = 9)

Arrow flow None

50.0% (n = 2) 37.5% (n = 8)

Paper In the pipeline!

Current program visualization tools don'’t
visualize code execution like students do

¥ Heavy use of boxes, no tables

¥ No persistence of values or organization
by iteration

¥ Code and variable values are separated

With rare exceptions:

Sajaniemi, J. and
Kuittinen, M. 2003.
Program animation based
on the roles of variables.
In Proceedings of the ACM
Symposium on Software
Visualization (SoftVis’03).
7-16.

Online Python Tutor

How can program
visualization design be
Informed by student
sketching?

Corresponding instructional techniques

song = getSong(“happybirthday.midi”)

‘Gothroughallitems for note in song:

Worked code examples
with subgoals and practice,
also across contexts

l Get the value duration = getDuration (note)

[Multiply the value by a factor setDuration (note, duration * 0.75)

l Use the changed input S play (song)

Structure

Program visualization
with predictions and

Clear goals other engagement

as well as emphasizing Function Behavior
goalsO relationships to

structure and behavior

