
Guzdial Research
• How do we support the use of programming as a medium for

thought and communication? How do we improve success in

programming (especially for people who aren’t computer scientists)?

• Past Research:

• Media Computation

• Subgoal Labelling of Worked Examples

• Current Research Questions:

• How do we make programming a more successful medium for learning

in non-CS subjects?

• How do students learn programming?

Papert, Logo; DiSessa, Boxer; Kay, Smalltalk

Media Computation

• Fall 1999:

All students at Georgia Tech must take a course in

computer science.

• Considered part of General Education, like mathematics,

social science, humanities…

• 1999-2003: Only one course met the requirement.

• Overall pass rate: About 78%

• Around 50% for Liberal Arts, Architecture/Design, and

Business students

Media Computation:

Teaching in a Relevant Context

• Presenting CS topics with
media projects and
examples
• Iteration as creating negative and

grayscale images

• Indexing in a range as removing
redeye

• Algorithms for blending both
images and sounds

• Linked lists as song fragments
woven to make music

• Information encodings as sound
visualizations

4

Results: Media Computation

0,9 0,9 0,8 0,9 0,9 0,9 0,8 0,8 0,80,1 0,1 0,1 0,1 0,1 0,1 0,2 0,2 0,2

Total Fall03Females Fall03Males Fall03Total Sp04Females Sp04Males Sp04Total Fall04Females Fall04Males Fall04

WDF

Change in Success rates in CS1 “Media Computation”

from Spring 2003 to Fall 2005

(Overall 85%)

Architecture 46.7% 85.7%

Biology 64.4% 90.4%

Economics 54.5% 92.0%

History 46.5% 67.6%

Management 48.5% 87.8%

Public Policy 47.9% 85.4%

Similar results replicated at multiple institutions

Eccles (1983) model of

achievement-related choices

• Students are often overwhelmed when programming.

“You’ve taught me so many details,

I don’t know which ones to use.”

(Clancy & Linn, 1990)

• How do we convey how to think about the purpose for the

parts of the program? About why each part is there?

• Richard Catrambone (1994) invented a way to label the

subgoals in examples provided to students.

• Developed in statistics, chemistry, and physics

• Never tested before in Computer Science

Part 2: Subgoal Labeling

Example of Written Materials

Subgoal

• Define Variables from Built-in

• Click on "Built-In" and "Definition" and pull out a

def variable.

• Click on the "variable" and replace it with

"fortuneList". This creates a variable called

"fortuneList".

• Click on "Lists" and drag out a call make a list

• Click on "Text" and drag out a text text block

and drop it next to "item". Click on the rightmost

"text" and replace it with your first fortune.

• Handle Events from My Blocks

• Click on "My Blocks" and "Button1".

• Drag out a when Button1.Click.

Non-subgoal

• Click on "Built-In" and "Definition" and

pull out a def variable.

• Click on the "variable" and replace it with

"fortuneList". This creates a variable

called "fortuneList".

• Click on "Lists" and drag out a call make

a list

• Click on "Text" and drag out a text text

block and drop it next to "item".

• Click on the rightmost "text" and replace

it with your first fortune.

• Click on "My Blocks" and "Button1".

• Drag out a when Button1.Click.

Original Video

Video with Subgoals

Results: Understanding

Results: Retention
Significant results for transfer as well.

Effect has been found with different

populations (e.g., secondary teachers),

and with text languages, too.

Why do subgoal labels work?

• Ashok Goel’s Structure-Behavior-Function (SBF)

model of design knowledge

• Structure is code

• Function is the purpose for the code, what

goal it achieves.

• Behavior is how the code dynamically

achieves the goal

• Behavior is hardest for students

• Subgoal labels, across different programs,

connect S, B, and F.

Current Research Questions

• How do we make programming a successful

medium for learning in non-CS subjects?

• Code has value as a learning medium

• Targeting Pre-Calculus and Economics

• How do students learn programming?

Code is Different

Bruce

Sherin

Code is Temporal & Causal

Teaching economics and systems-thinking.

First experiences with economic systems

Interleaving for Thinking about Systems

Play the Board
Game

Redesign the Board Game
Rules

Scale the Basic Board Game

Scale the Redesigned Board Game
Rules

What do we want from an economic system?

Define what you mean by “win.”
Can you come up with the perfect winning algorithm?

Put your algorithm in a game board
simulation. Does your algorithm work
the same over 1000’s of plays?

What do we want from an economic system?

Discrete Event Simulations,
in Blocks Language

Using Theory to Explain Learning Programming

• Functional: Create analogies to learning mathematics.

• Requires prior knowledge of mathematics and high self-efficacy for
mathematics

• Plan-based: Teach students patterns of code (plans) that achieve something they

want to do, and when they learn enough plans, they will learn the abstractions of the

syntax and semantics. Structure for function, abstracting to behavior.

• Developing experiments to test the theory (a) for instructional design and (b) as

an explanatory tool for programs “in the wild.”

• Teach the syntax and semantics of languages

• Needs context (for motivation and function/goals) and
concrete worked examples to support later abstraction.

• Constructionism: Little teaching, but let students play and learn
from rapid feedback.

• Inefficient. Requires high self-efficacy.

Extra Slides

70,98 59,55 73,63 65,03 65,56 64,81 70,98 59,55 73,6329,02 40,45 26,37 34,87 34,44 35,04 29,02 40,45 26,37

Total Fall01 Females Fall01 Males Fall01 Total Sp02 Females Sp02 Males Sp02 Total Fall02 Females Fall02 Males Fall02

Pass WDF

Success Rates in CS1 from Fall 1999 to Spring 2002

(Overall: 78%)

Architecture 46.7%

Biology 64.4%

Economics 53.5%

History 46.5%

Management 48.5%

Public Policy 47.9%

Experiment with App Inventor

• Used subgoal labeling to teaching Android App Inventor

(a blocks-based programming environment) to new

Computer Science Students.

• Two groups of undergraduate students:

• One group was shown a video for how to use the software to

build an App and given text listing the steps in the

instruction.

• Another group was given the video and the steps with

subgoal labels.

Lauren Margelieux, Mark Guzdial,

and Richard Catrambone,

ICER 2012

Week 1:

• Watch the video.

• Take a test to demonstrate understanding.

Week 2:

• Take a test to demonstrate retention.

• Watch a new video.

• Take a test to demonstrate understanding of second video.

• Take a test where students must build a new app,

transferring knowledge.

Steps in Experiment

Results: Define Variable Step in Transfer Task

0,

0,2

0,4

0,6

0,8

1,

Define Variable

Subgoal Conventional

p < .001, f = .61

